Recognition at the leaf surface

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Leaf Recognition

Research on automatic leaf classification has been active since 2000. Lots of hand-crafted features have been proposed, ranging from shape based, to statistical texture and margin related [2] [3] [1]. Also generic computer vision object recognition features, such SIFT[32] and HOG[33], are studied for this problem. Most of such manually engineered features achieve excellent accuracy on clean ima...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

The Reactive Chemisorption of Carbon Dioxide at Mg(100) Surface

X-ray photoelectron and electron energy loss spectroscopic (XPS-EELS) studies reveal that the following species are present when a mixture of CO2 and water vapour is exposed to the clean Mg(100) surface at 110K: CO3(a), C(a) CH(a), OH(a). The reactive chemisorptions of CO2 and H2O vapour coadsorbed on a Mg surface ...

متن کامل

LOW-ENERGY-ION ENHANCED DIFFUSION AT THE SURFACE OF METALS

Radiation enhanced diffusion at the surface of metals has been observed and studied for low-energy nitrogen ions at the surface of copper. The displacement of the target atoms during irradiation creates vacancies and other defects near the surface, thus enhancing the diffusion of implanted materials toward the surface and also into the solid. The mechanism has been studied here by a specia...

متن کامل

Computational method for quantifying growth patterns at the adaxial leaf surface in three dimensions.

Growth patterns vary in space and time as an organ develops, leading to shape and size changes. Quantifying spatiotemporal variations in organ growth throughout development is therefore crucial to understand how organ shape is controlled. We present a novel method and computational tools to quantify spatial patterns of growth from three-dimensional data at the adaxial surface of leaves. Growth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Phytologist

سال: 2014

ISSN: 0028-646X,1469-8137

DOI: 10.1111/nph.12830